$\newcommand{\R}{\mathbf{R}} \newcommand{\C}{\mathbf{C}} \newcommand{\A}{\mathcal{A}} \newcommand{\cF}{\mathcal{F}} \newcommand{\SPAN}{\text{span}} \newcommand{\B}{\mathcal{B}} \newcommand{\calL}{\mathcal{L}} \renewcommand{\u}{\mathbf{u}} \newcommand{\uu}{\mathbf{u}} \newcommand{\e}{\mathbf{e}} \newcommand{\vv}{\mathbf{v}} \newcommand{\w}{\mathbf{w}} \newcommand{\ww}{\mathbf{w}} \newcommand{\x}{\mathbf{x}} \newcommand{\xx}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\yy}{\mathbf{y}} \newcommand{\Cbar}{\overline{\mathbf{C}}} \newcommand{\Dbar}{\overline{\mathbf{D}}} \newcommand{\X}{\mathbf{X}} \newcommand{\Y}{\mathbf{Y}}$ \newcommand{\Xbar}{\widehat{\mathbf{X}}} \newcommand{\Ybar}{\widehat{\mathbf{Y}}} \newcommand{\zz}{\mathbf{z}} \renewcommand{\a}{\mathbf{a}} \renewcommand{\aa}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\cc}{\mathbf{c}} \newcommand{\ee}{\mathbf{e}} \newcommand{\hh}{\mathbf{h}} \newcommand{\m}{\mathbf{m}} \newcommand{\0}{\mathbf{0}} \newcommand{\ve}[1]{\mathbf{#1}} \newcommand{\col}[1]{\ifmmode\begin{bmatrix}#1\end{bmatrix}\else $\begin{bmatrix}#1\end{bmatrix}$\fi} \newcommand{\scol}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} \newcommand{\rref}{\operatorname{rref}} \newcommand{\hide}[1]{{}} \newcommand{\proj}{\operatorname{\mathbf{Proj}}} \newcommand{\Span}{\operatorname{span}} \newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\pdt}[2]{\tfrac{\partial #1}{\partial #2}} \newcommand{\pdd}[2]{\dfrac{\partial #1}{\partial #2}} \newcommand{\svdots}{\raisebox{3pt}{$\scalebox{.75}{\vdots}$}} \newcommand{\sddots}{\raisebox{3pt}{$\scalebox{.75}{$\ddots$}$}} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Char}{char} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\disc}{disc} \DeclareMathOperator{\dist}{dist} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\Eth}{Eth} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\Free}{Free} %\DeclareMathOperator{\frob}{frob} %\DeclareMathOperator{\Gal}{Gal} %\DeclareMathOperator{\genus}{genus} %\DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Hom}{Hom} %\DeclareMathOperator{\id}{id} %\DeclareMathOperator{\im}{im} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Mat}{Mat} \DeclareMathOperator{\modulo}{\medspace mod} \DeclareMathOperator{\Norm}{N} %\DeclareMathOperator{\nullity}{nullity} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\Pic}{Pic} %\DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\red}{red} \DeclareMathOperator{\res}{res} \DeclareMathOperator{\sgn}{sgn} %\DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Split}{Split} \DeclareMathOperator{\Sturm}{Sturm} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Tate}{Tate} \DeclareMathOperator{\tors}{tors} %\DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\val}{val} \DeclareMathOperator{\Weil}{Weil} \DeclareMathOperator{\sech}{sech} \newcommand{\adjacent}{\leftrightarrow} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SO}{SO} \newcommand{\cm}{\text{,}} %\newcommand{\pd}{\text{.}} \newcommand{\n}{\noindent} \newcommand{\Omicron}{\mathrm{O}} \newcommand{\Zeta}{\mathrm{Z}} \renewcommand{\div}{\mathop{\mathrm{div}}} \renewcommand{\Im}{\mathop{\mathrm{Im}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} \renewcommand{\ss}{\mathop{\mathrm{ss}}} \newcommand{\elliptic}{\mathop{\mathrm{ell}}} \newcommand{\new}{\mathop{\mathrm{new}}} \newcommand{\old}{\mathop{\mathrm{old}}} \newcommand{\Bs}{\boldsymbol} %\newcommand{\ds}{\displaystyle} %\newcommand{\f}{\mathfrak} \newcommand{\s}{\mathcal} %\newcommand{\A}{\mathbb{A}} %\newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\Fpbar}{\bar{\mathbb{\F}}_p} \newcommand{\G}{\mathbb{G}} \newcommand{\Gm}{\mathbb{G}_{\mathrm{m}}} \newcommand{\N}{\mathbb{N}} \renewcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} %\newcommand{\R}{\mathbb{R}} %\newcommand{\R}{\mathbf{R}} \newcommand{\T}{\mathbb{T}} \newcommand{\V}{\mathcal{V}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\E}{\mathbf{E}} \renewcommand{\H}{\mathrm{H}} \newcommand{\M}{\mathbf{M}} \renewcommand{\S}{\mathbf{S}} \newcommand{\var}{\mathbf{Var}} \newcommand{\eps}{\varepsilon} \newcommand{\erf}{\operatorname{erf}} \newcommand{\rar}{\rightarrow} \newcommand{\lar}{\leftarrow} \newcommand{\hrar}{\hookrightarrow} \renewcommand{\iff}{\Longleftrightarrow} \newcommand{\xrar}{\xrightarrow} \newcommand{\rrar}{\longrightarrow} \newcommand{\mt}{\mapsto} \newcommand{\mmt}{\longmapsto} \newcommand{\angles}[1]{\langle #1\rangle} \newcommand{\ceiling}[1]{\lceil #1\rceil} \newcommand{\floor}[1]{\lfloor #1\rfloor} \newcommand{\set}[2]{\{\,#1\,\,|\,\,#2\,\}} \renewcommand{\emph}{\it} \renewcommand{\em}{\emph} $\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}$

Chapter 26

Visualizing differential equations and the Fourier transform.

Convolution.

Recall that the convolution of two functions $f, g:\R \to \C$ is the function $$(f \ast g)(x) = \int_{\R} f(x-y) g(y)\,dy.$$

One reason for interest in convolution is because the Fourier transform of the convolution $f*g$ of two functions $f(x)$ and $g(x)$ is the product of the Fourier transforms of $f$ and $g$: $$\cF(f \ast g) = (\cF f)(\cF g).$$

Convolution may look asymmetric in how it treats $f$ and $g$ (we put $x-y$ inside $f$ rather than $g$), but it works the same way with the roles of $f$ and $g$ swapped: in other words, $(g \ast f)(x) = (f \ast g)(x)$.

What is the meaning of convolution? An instructive example is $f \ast u_L$ where $$u_L(x) = \begin{cases} L, & -1/(2L) \le x \le 1/(2L)\\ 0, & |x| > 1/(2L)\end{cases}$$ is a square bump concentrated over a short interval $[-1/(2L), 1/(2L)]$ of length $1/L$ centered at the origin and having height $L$ (so total area 1). Then $$(f \ast u_L)(x) = \int_{\R} f(x-y) u_L(y)\,dy = L \int_{-1/(2L)}^{1/(2L)} f(x-y)\,dy = \frac{1}{1/L} \int_{x-1/(2L)}^{x+1/(2L)} f(w)\,dw$$ (with the substitution $w = x-y$). This value at $x$ is the average of $f$ over the interval centered at $x$ with length $1/L$. The effect of such convolution is to “smoothen” $f$ by replacing its value at each $x$ with the average of its values nearby (for large $L$). So for large $L$, $f \ast u_L$ is a good approximation to $f$ that is smoother.

Below we give two examples of $f \ast u_L$. Observe how $f \ast u_L$ better approximates $f$ as $L$ get larger.

Example 1: Square Bump
Function

$f(x) = \begin{cases} 1, & |x| \le 1,\\ 0, & |x| > 1. \end{cases}$

$u_L$: hide show

Parameter
Example 2: Triangular Bump
Function

$f(x) = \begin{cases} 1-|x|, & |x| \le 1, \\ 0, & |x| > 1.\end{cases}$

$u_L$: hide show

Parameter

The heat equation via Fourier transform.

The heat equation governing the time evolution of heat distribution along a single spatial dimension is the PDE $$\pd{u}{t}=\alpha \frac{\partial^2 u}{\partial x^2}$$ for a constant $\alpha > 0$ (thermal diffusivity, with dimension (distance)$^2$/time), where $u=u(t,x)$ is defined for $t\geq 0$ and $x\in\R$. In earlier chapters we made a change of variable so that $\alpha=1$, but here we keep the equation in its general form. As usual, we also impose an initial condition: $$ u(0,x)=f(x) $$ where $f(x)$ is the initial heat distribution on the line. Here is the solution:

For $t > 0$, the solution $u(t,x)$ of the heat equation with initial condition $u(0,x) = f(x)$ is the convolution of $f(x)$ with a scaled Gaussian that depends on $t>0$: $$ u(t,x)=\int_{\R} f(y) \frac{1}{\sqrt{4\pi \alpha t}} e^{-(x-y)^2/(4\alpha t)} \,dy=\frac{1}{\sqrt{4\pi \alpha t}}\int_{\R}f(y) e^{-(x-y)^2/(4\alpha t)} \,dy. $$

In the textbook, there is a detailed discussion about how to obtain this solution. First, we apply Fourier transform and find for every $t \ge 0$ and every $\lambda \in \R$: $$\widehat u(t,\lambda) = \widehat{f}(\lambda) e^{-\alpha t \lambda^2}.$$

We then apply the inverse Fourier transform (with respect to $\lambda$) to $\widehat{u}(t,\lambda)$ and obtain $$u(t,x)= \cF^{-1}(\widehat{u}(t,\lambda)) = \frac{1}{2\pi}\int_{\R} \widehat{f}(\lambda) e^{-\alpha t \lambda^2} e^{i\lambda x}\,d\lambda.$$

Lastly we use convolution to rewrite it into the desired form.

Below we visualize $\widehat{u}(t,\lambda)$ and $u(t,x)$ for the heat equation with Gaussian initial condition $f(x) = e^{-x^2}$. Adjust the parameter $\alpha$, and hit the “Run the animation!” button to see the animation. Observe that the animation begins at time $t = 0$ with the graphs of $u(0, x) = f(x)$ in blue and $\widehat u(t,\lambda) =\sqrt{\pi}e^{-\lambda^2/4}$ in red that are both independent of $\alpha$ (but as $t$ grows, the new red and blue curves for $t > 0$ very much depend on $\alpha$: this is because the PDE depends on $\alpha$, and can also be seen explicitly in the formulas for each).

IVP

\begin{align} &\pd{u}{t} =\alpha \frac{\partial^2 u}{\partial x^2},\\ & u(0,x) =f(x) = e^{-x^2} \end{align}

Fourier transform: \begin{align} \widehat u(t,\lambda) &= \widehat{f}(\lambda) e^{-\alpha t \lambda^2}\\ & = \sqrt{\pi}e^{-(1+4\alpha t)\lambda^2/4}. \end{align}

Solution: \begin{align} u(t,x) &= \cF^{-1}(\widehat{u}(t,\lambda)) \\ &= \frac{1}{\sqrt{1+4\alpha t}}e^{-x^2/(1+4\alpha t)}. \end{align}


Parameter and Display Options


Speed: normal   x1/2     x1/5     x1/10    
Animation

Time: $t = $